

PA 2200 PA12

EOS GmbH - Electro Optical Systems

Product Information

This whitish fine powder PA 2200 on the basis of polyamide 12 serves with its very well-balanced property profile a wide variety of applications.

Laser-sintered parts made from PA 2200 possess excellent material properties:

- high strength and stiffness
- good chemical resistance
- excellent long-term constant behaviour
- high selectivity and detail resolution

• various finishing possibilities (e.g. metallisation, stove enamelling, vibratory grinding, tub colouring, bonding, powder coating, flocking)

bio compatible according to EN ISO 10993-1 and USP/level VI/121 °C

• approved for food contact in compliance with the EU Plastics Directive 2002/72/EC (exception: high alcoholic foodstuff)

Typical applications of the material are fully functional plastic parts of highest quality. Due to the excellent mechanical properties the material is often used to substitute typical injection moulding plastics. The biocompatibility allows its use e.g. for prostheses, the high abrasion resistance allows e.g. the realisation of movable part connections.

Mechanical properties	Value	Unit	Test Standard
Flexural Modulus, 23°C	1500	MPa	ISO 178
Flexural Strength	58	MPa	ISO 178
Izod Impact notched, 23°C	4.4	kJ/m²	ISO 180/1A
Izod Impact unnotched, 23°C	32.8	kJ/m²	ISO 180/1U
Shore D hardness (15s)	75	-	ISO 868
Ball indentation hardness	78	MPa	ISO 2039-1
3D Data	Value	Unit	Test Standard

The properties of parts manufactured using additive manufacturing technology (e.g. laser sintering, stereolithography, Fused Deposition Modelling, 3D printing) are, due to their layer-by-layer production, to some extent direction dependent. This has to be considered when designing the part and defining the build orientation.

Tensile Modulus (X Direction)	1700	MPa	ISO 527-1/-2
Tensile Modulus (Y Direction)	1700	MPa	ISO 527-1/-2
Tensile Modulus (Z Direction)	1650	MPa	ISO 527-1/-2
Tensile Strength (X Direction)	48	MPa	ISO 527-1/-2
Tensile Strength (Y Direction)	48	MPa	ISO 527-1/-2
Tensile Strength (Z Direction)	47	MPa	ISO 527-1/-2
Strain at Break (X Direction)	24	%	ISO 527-1/-2
Charpy impact strength (+23°C, X Direction)	53	kJ/m²	ISO 179/1eU
Charpy notched impact strength (+23°C, X Direction)	4.8	kJ/m²	ISO 179/1eA
Thermal Conductivity (X Direction)	0.144	W/(m K)	DIN 52616
Thermal Conductivity (Y Direction)	0.144	W/(m K)	DIN 52616
Thermal Conductivity (Z Direction)	0.127	W/(m K)	DIN 52616
Thermal properties	Value	Unit	Test Standard
Melting temperature (10°C/min)	176	°C	ISO 11357-1/-3
Vicat softening temperature A	181	°C	ISO 306
Vicat softening temperature (50°C/h 50N)	163	°C	ISO 306

Created: 2010-09-03 Source: www.materialdatacenter.com

The data correspond to our knowledge and experience at the time of publication. They do not on their own represent a sufficient basis for any part design, neither do they provide any agreement about or guarantee the specific properties of a product or part or the suitability of a product or part for a specific application. It is the responsibility of the producer or customer of a part to check its properties as well as its suitability for a particular purpose. This also applies regarding the consideration of possible intellectual property rights as well as laws and regulations. The data are subject to change without notice as part of EOS' continuous development and improvement processes.

PA 2200 PA12	EOS Gr	nbH - Electr	o Optical Systems
Other properties	Value	Unit	Test Standard
Density (lasersintered)	930	g/cm³	EOS Method

Characteristic

Processing	Chemical Resistance
Laser Sintering	General Chemical Resistance
Delivery form	Ecological valuation
White	US Pharmacopeia Class VI Approved

Created: 2010-09-03 Source: www.materialdatacenter.com

Page: 2/2

The data correspond to our knowledge and experience at the time of publication. They do not on their own represent a sufficient basis for any part design, neither do they provide any agreement about or guarantee the specific properties of a product or part or the suitability of a product or part for a specific application. It is the responsibility of the producer or customer of a part to check its properties as well as its suitability for a particular purpose. This also applies regarding the consideration of possible intellectual property rights as well as laws and regulations. The data are subject to change without notice as part of EOS' continuous development and improvement processes.

PA 2200

PA 2200 is a non-filled powder on basis of PA 12.

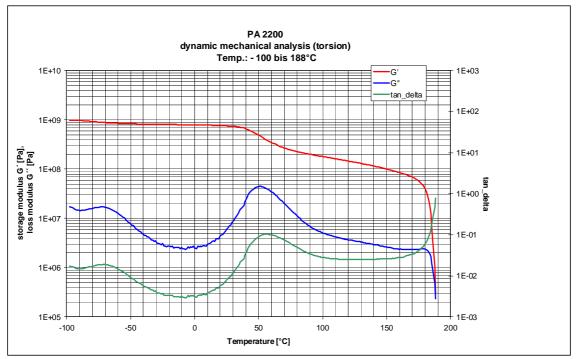
General Properties

Property	Measurement Method DIN/ISO	Units	Value
Water absorption	ISO 62 / DIN 53495		
100°C, saturation in water		0/0	1.93
23°C, 96% RF		0/0	1.33
23°C, 50% RF		%	0.52

Property	Measurement Method DIN/ISO	Unit	Value
Coefficient of linear thermal ex- pansion	ISO 11359 / DIN 53752-A	x10⁻⁴/K	1.09
Specific heat	DIN 51005	J/gK	2.35

Thermal properties of sintered parts

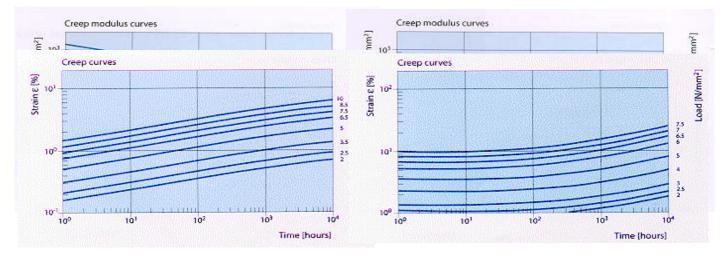
Property	Measurement Method DIN/ISO	Unit	Value
Thermal conductivity	DIN 52616		
vertical to sintered layers		W/mK	0.144
parallel to sintered layers		W/mK	0.127


EOS GmbH - Electro Optical Systems

Telefon:+49 (0)89 / 893 36-0Telefax:+49 (0)89 / 893 36-285Internet:www.eos.info

Short term influcence of temperature on mechanical properties

An overview about the temperature dependence of mechanical properties of PA 12 can be retrieved from the curves for dynamic shear modulus and loss factor as function of temperature according to ISO 537.

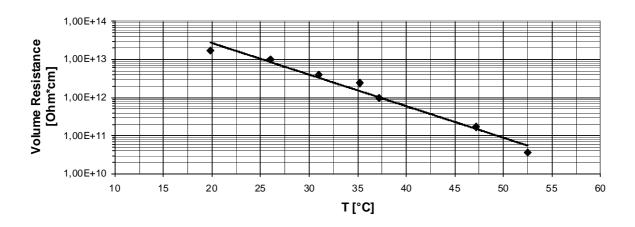

In general parts made of PA 12 show high mechanical strength and elasticity under steady stress in a temperature range from – 40° C till + 80° C. Short time loading of parts made of PA 12 without stress is possible up to 160° C.

Long term properties under mechanical load and temperature

In general thermoplastics have higher mechanical strength under short term load then under long term load (> 1000 h) as result of creep. This occurs mostly at higher temperatures and leads to a reduction of modulus (creep modulus). Usually the creep resistance (mechanical properties under continuous load) is determined with the uniaxial tensile creep test (DIN 53444) under different loads and temperatures.

Creep modulus curces PA 12 at T = 23°/100°C

Creep elongation curves PA 12 at T = 23°C/100°C


Electrical Properties

Property	Measurement Method DIN/ISO	Unit	Value
Volume Resistance	DIN 53482	Ω^* cm	1013 -1015
	IEC-Publ. 93		
Surface Resistance	DIN 53482	Ω	1013
	IEC-Publ. 93		
Relative Permittivity (1 kHz)	DIN53483	10 ² Hz	3,8
	IEC-Publ. 250		
Dielectric strength	DIN 53481	KV/mm	92
Dielectric dissipation faktor (1 kHz)	DIN 53483	-	0.05 – 0.09
	IEC-Publ. 250		

The electrical properties depend on temperature and relative air humidity strongly. The above mentioned values charakterize polyamide 12 at following conditions: storage at 23°C, 50% air humidity up to saturation.

The details contained herein characterize the electrical behaviour of material and not of a specified building part. The details are based on our present state of knowledge and experience. We do, however, pass them without any warranty or property assurance.

Temperature dependence of Volume Resistance of PA 12

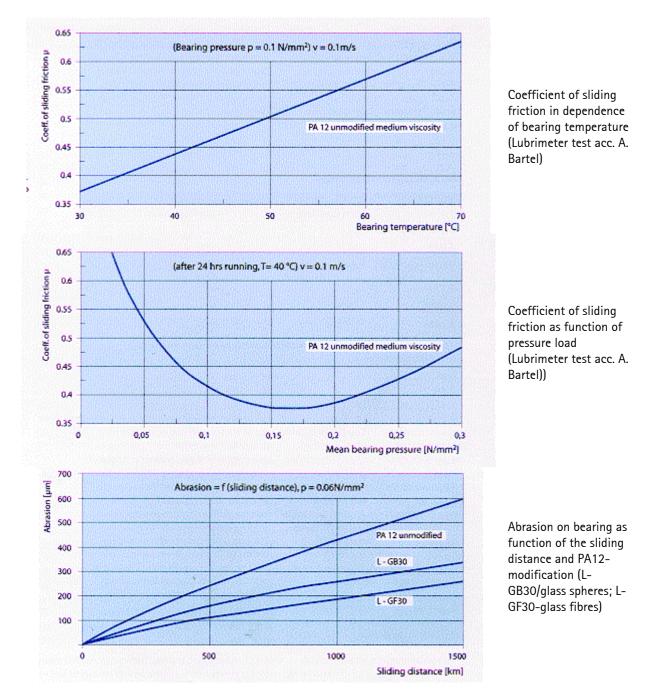
Flammability / Burning Behaviour

The powder contains no flame retardants, parts made of PA 2200 can burn.

Property	Measurement Method DIN/ISO	Unit	Value
	IEC 60707 [*]		
	ISO 1210	Klasse (1,6 mm)	HB
Flammability	UL94*	Klasse (1,6 mm)	HB
			(horizontal burning)

*) flammability test as approval for electrical application

The details are based on our present state of knowledge and experience. We do, however, pass them without any warranty or property assurance.


Robert-Stirling-Ring 1

D-82152 Krailling / München

Frictional Properties, Abrasion and Wear

Polyamid 12 is characterized by a low coefficient of friction and by very good abrasion resistance.

Abrasion of sintered parts according to Taber-Test

Material	Measurement Method DIN/ISO	Unit	Value
PA 2200	DIN 53754	mg/2000 U	34
PA 3200 GF	DIN 53754	mg/2000 U	30

Chemical Resistance of PA 12

- + = resistant = non-resistant \oplus =practically resistant
- O = conditional resistant $\otimes = litte resistant$

Durat	ion	6 Months	4 Weeks
Medium	Concentration	20°C	60°C
Aceton	100	+	+
Battery acid	10	8	-
Formic acid		+	0
Ammonia, aqueos solution	Conz.	+	+
Aniline	100	÷	
Apple juice		+	+
Asphalt		+	+
Barium salts		+	+
Petrol		+	+
Benzene	100	+	0
Beer		+	
Break fluid		+	+
Butane Gas	100	+	+
Butane liquid	100	+	
Butter		+	

Duration		6 Months	4 Weeks
Medium	Concentration	20°C	60°C
Chrome acid	10	-	-
Cyclohexanone	100	+	0
Dibutylphtalate (Vestinol®C)		+	+
Diethyl-Ether (Kp 35°C)	100	\oplus	
Dioctylphtalate (Vestinol ®AH)		+	+
Dixan®Base	useable	+	+
Acetic acid	10	+	\otimes
Ethyl-Acetate		+	Ð
Ethyl-Alkohol, denature	100	+	Ð
Fish		+	
Hydrofluoric acid	40	\otimes	-
Anti freezer		+	+
Dishes cleaner		+	+
Glycerine	100	+	+
Glycol	100	+	+
Fuel Oil		+	+
coffee, drinkable		+	
Caustig	50	+	+
Potassium Chlorate aqueous solution	cold, saturated (7,3)	\oplus	0
Potass. Permanganate aqueous solution	cold, saturated (6,4)	\otimes	-
Linseed Oil		+	+

Duration		6 Months	4 Weeks
Medium	Concentration	20°C	60°C
Methanol	100	+	÷
Milk		+	+
Lactid Acid aqueous solution	10	\oplus	0
Sodium-Chloride aqueous solution	cold saturated	+	+
Sodium-Hypochloride, aqueous solution	5	\oplus	\otimes
Sodium hydroxid	50	+	+
Ozone (0,5 ppm)		0	
Paraffin	100	+	+
Persil®Base	useable	+	+
Petroleum	100	+	+
Propane Gases	100	+	+
Pyridine	100	+	
Rum	40	+	+
Nitric Acid	10	-	-
Salt Acid	10	-	-
Soft Soap		+	+
Sulfur	100	+	+
Sulfur Acid	10	\oplus	8
Sea Water		+	+
Silicon Oil		+	+
Edible Oil, animal + vegetable		+	+

EOS GmbH - Electro Optical Systems

Prüfdauer		6 Monate	4 Wochen
Medium	Konzentration	20°C	60°C
Toluene	100	+	\otimes
Tomato Juice		+	+
Trichlorethylene	100	0	\otimes
Water	100	+	+
Hydrogen-Peroxide aqueous solution	30	+	
Whiskey	40	+	
Xylene	100	+	0
Citric acid aqueous solution	cold saturated	+	0
Lemon juice		+	+
Sugar solution	every	+	+

Zertifikat , Biokompatibilität PA 2200

	BIOCOMPATIBILITY
C	ERTIFICATE
Testmaterial:	PA 2200
Supplier:	EOS GmbH Pasinger Strasse 2, D-82152 Planegg
Studies performed:	The following studies were performed in order to determine the biocompatibility of the product PA 2200 according to ISO 10993-1:
	CYTOTOXICITY
	SENSITISATION, polar extract
	SENSITISATION, non-polar extract
	INTRACUTANEOUS REACTIVITY
Results:	The product did not show any adverse effects in the studies performed. Therefore, the biocompatiblity of the test material was proved.
BSL	BIOSERVICE Scientific Laboratories GmbH Munich
	Behringstraße 6

D-82152 Planegg

Mun

Dr. Achim Albrecht Biological Safety Testing Date: April 10, 2001

